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PRECEDINGPAGEBLANK NOT FILMED

NOMENCLATURE

A analytical limiter input (used in describing function analysis)

a analytical limiter value (used in describing function analysis)

bl/A describing function gain

DB_I _ dPadband of rudder pedal deflection

DB@H deadband in rudder pedal integrator

FCN rudder pedal to rudder gearing function and limiter

f digital computer sampling frequency
S

Cy full authority series servo gain

GH(s) open loop transfer function

I moment of inertia about aircraft z-axis
z

K root locus gain

KB control mode phase-out gain

Kr_ gain of roll attitude feedback into yaw controller

K parallel/series servo mode combined analysis gain

P ffi(Kps x K30 x Kyc x -i x FCN)

K parallel servo gain
ps

Ks parallel/series servo mode combined analysis gain = (Kss x K30 )

K series servo gainss

KTORQUE actuation dynamics torque gain

_C additional parallel servo gain

K_ yaw attitude feedback gain

K_ yaw rate feedback galn

K_H pedal integrator gain

t v
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°.

K1 combined analysis gain = (K_ × K_H)

K2 combined analysis gai, = (K10 + K20)

K3 full authority series servo mode combined analysis gain

= (K30 × - 1 × G y FCP × _IORQUE/Iz)Y

K parallel/series servo mode combined analysis gain5

= (KTORQUE/I z)

KI0 yaw controller forward gain component

K20 yaw controller forward gain component

F 0 yaw controller coupling gain

LM_I _ position limit of rudder pedals

LM_c yaw controller coupling limit

SRFIMF state-rate-feedback-implicit-model-following

T digital computer sampling period

$ aircraft sideslip angle

_I time derivative of inertial sideslip angle

61_ pilot control input to yaw controller (pedal input)

T2 actuation model time constant

T7 flight controller compensation time constant

aircraft roll attitude

aircraft yaw attitude (heading)

aircraft yaw rate

aircraft yaw acceleration

_AL experimental limiter output

@BL experimental limiter input

?
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AN ANALYSIS OF A NONLINEAR INSTABILITY IN THE IMPLEMENTATION

OF A VTOL CONTROL SYSTEM DURING HOVER

Jeanine M. Weber

NASA-Ames Research Center

SUMMARY

An analysis has been conducted to determine the contributions to non-

linear behavior and unstable response of the model following yaw control

_ystem of a VTOL aircraft during hover. The system was designed as a state

rate feedback implicit model follower that provided yaw rate command/heading

hold capability and used combined full authority parallel and limited

authority series servo actuators to generate an input to the yaw reaction

control system of the aircraft. Involved in the analysis were linear and non-

linear system models, and describing function linearization techniques to

determine the influence of input magnitude and bandwidth, series se'vo

authority and system bandwidth on the control system instability. Results

of the anelysis describe stability boundaries as a function of these system

design characteristics.

INTRODUCTION

The use of advanced control systems that provide stabilization and

command augmentation for attitude, translational velocity, and position

control have been shown to reduce pilot workload for VTOL hover operations

(references 1 and 2). One such example is the state-rate-feedback-implicit-

model-following (SRFIMF) concept examined in reference 3, which achieves

model-following fidelity through the feedback of acceleration, rate and atti-

tude signals. In the ground simulation experiment of reference 3, this

concept was shown to enhance the capability of the pilot-aircraft system to

perform a demanding hover (and deceleration) task.

In-flight evaluation of several such control systems, including SRFIMF,

with a VTOL research aircraft has been proposed. Toward that end, it is

anticipated that the control system of an existing operational VTOL aircraft

will be modified to permit incorporation of these concepts. In order to

minimize the cost of implementation, a simplex electronic control system with

manual override capability has been suggested. Safety considerations would

be satisfied with a parallel/series servo arrangement of the actuators such

that each servo is limited to contain a runaway failure. The parallel servo

would be full authority and have a limited rate-of-actuatlon. The series

servo would be position limited and capable of a high rate-of-actuatlon.

, I
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The reference 3 ground simulation assumed a full-authority fly-by-wire

control system and did not address possible influences of the parallel/series
servo mechanizatlon on the SRFIMF control system. Hover simulation of the

SRFIMF controller implemented in this manner during a control _ystem failure

study at Ames Research Center in August, 1979 (reference 4), revealed a non-

linear instability in the yaw axis. An electrical limlter in the control

system, designed to limit the servo input upstream, saturated and cycled
causing the divergent oscillation of the output slgnalq. Although during the

simulation, the instability was apparent only in the yaw axis, it is antici-

pated that there is a potential problem in any channel using the parallel/
series mechanization.

The purpose of this study was to examine the causes and characteristics

of this nonlinear instability. A describing function analysis technique
(reference 5) was used in the study. Simplifie_ linear and non-linear models

of the controller, actuation and airframe dynamics were used to isolate and

analyze the problem experimentally. The analysis encompassed only the wings-

level hover flight condition.

This report presents the results of this analysis, including a descrip-
tion of the model with the appropriate simplifications, and analyses of the

linear and nonlinear systems. The Nonlinear System Analysis portion involves

a description of the system, theoretical and experimental approaches to under-
standing nominal system response, and experimentally establishing stability

boundaries by varying system configuration.

MODEL DESCRIPTION

The SRFIMF yaw control system has been simplified for purposes of
analysis. Included in the simplified model are the yaw flight controller,

the option for selecting either parallel/series or full authority series
servo implementation, actuation dynamics and yaw response of the aircraft

which neglects aerodynamic effects.

Figure 1 shows the SRFIMF yaw control system as taken from figure 14 of
reference 3. Shown in figure 2 is the yaw control system used in the

analysis, which includes the following simplifications from the figure 1

model: deletion of the electrical deadbands on the pedal inputs to the sys-

tem (DB_I_ and DB_H), deletion of the sideslip command mode (located down-
stream of the 8I and 8 inputs) which is active only for flight at or
above 30 knots, and deletion of the tan_ input path which is inapplicable to

this wings-level analysis.

Figure 3 shows a block diagram of the simplified overall control system

including servo implementation and actuation dynamics. The implementation

flag selects either the parallel/series servo mode (I) or the full authority
series servo mode (0). The limlter LH_c shown in figure 2 limits the servo
Input signal in the case of a runaway failure. A digital representation of

the model shown in figures 2 and 3 was used in the analysis.

2
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The problem has been analyzed in two parts: Initially the limiters were

removed and the Iznear response was studied in each of the parallel/serles
and full authorlty series servo modes. The p Jse of this was to understand

the linear system response, and to verify the ,IpilfiedFortran model. The

limiters were then introduced and the nonlin_ response was analyzed theo-

retically with the describing function technique and experimentally using
the time histories generated by the Fortran program.

LINEAR SYSTEM ANALYSTS

Linear System Classical Stability Analysis

This section describes the resPonse characteristics of the linear system
in terms of classical analysis techniques.

With further simplification, the block diagrams in figures 2 and 3 have
been reduced to figures 4 and 5, representing the parallel/series and full

authority series modes respectively.

Gain and signal equivalences between SRFIMF and the analysis, as well as

the nominal gain values are given in the Appendix.

From figures 4 and 5 the open loop transfer functions of each mode can
be written:

K

s

Parallel/Series S +
Servo Mode

(Linear System)

Node
(Linear System)

where K is the open loop gain factor.

A root locus of the parallel/serles mode is shown in figure 6 with

partlal root locl of each mode in figures 7 and 8 showing only the imaginary

axis region. From figures 7 and 8 it is apparent that the system is condi-

tionally stable in each mode, thus gain reduction is sufficient to destabl-
llze the response. Note that in the parallel/serles mode, the high frequency

eigenvalues cross the imaginary axis at a higher gain value than in the series
servo mode, thus the series servo mode remains stable at a lower effective

3
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, system gain. From equations (i) and (2) it can be seen that the series servo
mode has three open loop integrators, whereas the parallel/serles mode has

four. In the nonlinear system, the extra integrator associated with the

parallel/series servo implementation introduced a further destabilizing
effect to the system.

Relative degrees of conditional stability between the modes are also
illustrated using frequency response techniques. Figures 9 and I0 are Bode

diagrams of tilelinear system. The higher gain and phase margin of the

series servo mode indicate the increased resilience of that mode to system

gain and phase angle reduction. From the figures it can be seen that the
series servo mode becomes neutrally stable at the phase crossover frequency

(2.2 rad/sec); above thls frequency the system has a stable response. Due to
tlleconditional stablltiy of the system, if the Bode gain is reduced 21 db

below the total loop gain of the design, the system becomes unstable. By

contrast, the parallel/serles servo mode has a phase crossover frequency of
4.5 tad/set and the total loop gain can only be reduced by 11.6 db without

destabillzing the system.

Computer Model Verification

The nominal sampling period, T, of the full Harrier simulation on the

Xerox Sigma 9 computer is .05 sec, corresponding to a sampling frequency, is,
of 20 Nz. However, when the llnearized model (limiters removed) is run at

T = .05 sec, the characteristics of the time response are not equivalent to

those predicted by the ilnear root locus analysis. When the sampling fre-

quency is increased by a f_,ctorof ten (T = .005, fs = 200 Hz), the time
history characteristics compare well to those predicted by the linear analy-

sis in the region of marginal to neutral stability. Figure ii shows a com-
parison of the marginally stable mode characteristics as extracted from the

time history responses run at T = .05, T = .005 and the linear analysis.

It is apparent from this comparison that the slower sampling frequency
reduces the damping of this mode substantially and can lead to erroneous

conclusions regarding system stability. Thus, for accuracy purposes, the

analysis of this problem has been accomplished with a sampling period of
T = .005 sec.

J

NONLINEAR SYSTEM ANALYSIS

Nonlinear Control System Elements

The non-llnear control system includes llmlters on series servo position

and on the yaw reaction control.

The purpose of the first llmlter is to arrest the series servo input to
the yaw control actuator in the case of a series runaway failure. The limits
are determined by the percentage of total control power that is acceptable to

1982014407-009



be allotted to the series servo. The practical limits on series servo control

power are a compromlse bet_'een that required for effective control augmenta-

tion and that acceptable based on hard-over servo failure. With inputs of
sufficient magnltudes and above specific frequencies the series servo was

found to saturate and limit cycle, causing a divergent oscillation of the yaw

response of the aircraft.

The yaw reaction control limit simply represents the total yawing moment

control authority. This authcrlty limit may be reached if the parallel
actuator is driven to sufficiently large magnitudes by the pilot's control

inputs or by unstable response in the yaw axis.

Describing Function Analysis

One tool for llnearizatlon and analysis of nonllneaz control system

_: elements is the describing function which is discussed in reference 5. The

describing function of a simple llmiter is:

where

bI
-- = gain which replaces llmlter in the linearizationA

A = _BL = magnitude of signal input to limiter

a - value to which output is limited

It can be seen from equation (3) that as the ratio of limiter size to signal

magnitude, a/A, varies between 1 and 0, the describing function gain, b!/A,
varies between I and 0 also.

Shown in fi2ure 12 is the parallel/serles mode block diagram including
the nonlinear element and, in equation (4), the open-loop transfer function
with the equivalent llnearized element. (A similar transfer function may be
written for the sertes servo mode.)

Parallel/Serles I
I Servo Mode S3 - -A- 1
[(Linearlzed �_;S +_
[ Systm)
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As the limit on serw)coamland i_ reached and bl/A decreases from the
linear value of 1, tile effects on the open loop transfer function are:

l. a reduction in system gain

2. movement of a pole from the origin along tile negative real " :s.

By solving the characteristic equation at discrete bl/A values, the cor-
responding variation of the closed-loop roots of the system has been deter-
mined. Figures 13 and 14 show these root locations in each of the para[l_/
series and series servo modes respectively. In these figures, it may be seen
that as bl/A decreases from 1, a low frequency mode is introduced. The
damping of this mode is reduced progressively as bl/A approaches zero. In
the parallel/series mode (figure 13), as bl/A approaches zero, the closed-
loop roots of the syst_ approach those of the open-loop case that has three
zeros at the origin. This leads to the low frequency elgenvalues being
forced into the right half-plane. In figure 14, however, the closed-loop
roots of the series system approach only two zeros at the origin as bl/A
approaches zero; thus, the root locus branches approach vertically and the
elgenvalues always remain in the left half-plane.

It may be concluded that describing function gain value has a signifi-

cant effect on system response and stability. Given system input, _I_, the
describing function gain value, bl/A , may be found with the transfer function

between system and [imiter input, A/6I_, given in equation (5).

.... (5)

610 aI_ i

ls
S3 S +-- + +

T2 T7

The complexity of the equation as a function of A prohibited solving

explicitly for A In term_ of 6i_. InsteP, an tterattve procedure was
used which consisted of:

l. guessing A

2. calculatlng the corresponding bl/A

3. calculating A = 6i_ x RHS

4. comparing calculated A with guess and, if they were not equal,
returning to l.

6
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This iterative procedure was followed unti. the guessed value of A from
step #I converged upon the calculated value of A from stcp #3, when the
corresponding describing function gain value, bl/A , for the given system

input, 6I¢' was able to be found from equation (3). Note equations (3) and
(5) show that although the describing function gain is inherently only magni-
tude dependent, its use in the closed loop analysis causes the limiter Input
magnitude, A, and hence bl/A to be trequency dependent also. Thus, the fre-

quency as well as the amplitude component of system input, 6I_, atfected the
iteration on bl/A.

It is possible from this relationship to dete'mine the effect on system

stability of the amplitude and frequency of the p.tots input _6I_), the serve
command limit (a), and the control system bandwiath as determined by the
overall system loop gain.

Effect of Implementation on Time Response

In this section, the differences in nonlicear dynamic response between

the parallel/serles and series servo implementations are illustrated with
sample time responses and comparisons of those responses with the theoretical

predictions are made as a means of assessing the validity of the theoretical
model.

From the discussion in the previous section it may be anticipated that

the discernible effect of parallel/serles servo implementation is a divergent
response once the magnitude of the pilot's input has reached a sufficient
level. It may also be anticipated that, although the damping of the series
servo mode response is greatly reduced, the response remains stable for all

inputs.

Shown in figures 15 through 22 is an exlerimental comparison between the

responses of the parallel/series and series only modes at various input
magnitudes and frequencies for the nominal llmiter authority of ±.12 inches.
Among the time history traces shown are (top to bottom) llmlter input,
llmlter output, yaw acceleration, rate and heading and the pilot's pedal
input. Table 1 summazlzes the theoretlcakly predicted response (i.e., limlt_r
input magnitude and nonlinear mode frequency and damping) and the results of
the experimental comparison at each system configuration.

From figures 15 and 16, it may be seen that the parallel/series system
is stable with commanded output, _, in response to each of the low frequency
inputs. In figure 15, the low amplitude input of .I in. does not saturate
the llmlter. With an input amplitude of .4 in., figure 16 shows the inltlal
response of OAL limited to .12 in. with respect to _BL; however, the
response after this transient remains unsaturated.

Each of these cases was predicted very _ii by theory as shown in
Table I, the unsaturated responxa tmre predicted by a describing function
gain of 1.0 (limlter unsaturated), and no deatabiliaIn8 nonlinear mode.

2 i
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The steady state llmlter input magnitudes, A or _81,, ,_re also corroboratod
very well.

Increasing the frequency of the tow amplitude input to 8 tad/see In

figure 17 shows steady state limiter Input, _BL, to have increased to .23 in.
(compared with a predicted value of .24 in.) and _AL _s a stable limit
cycle. The describing function gain of .56 predicted the introduction of the
lightly damped, low frequency mode overlaying the system output, 4. From the
table, the gap between theory and experiment has widened here, with the non-
linear mode predicted to be of higher frequency and higher damping than the
experimental results shown. In _ gure 18, increasing the Input amplitude to
.4 in. yielded an unstable limit cycle, _AL, and a divergent yaw attitude
response, ¢, (; = -.O81). Theory again predicted the initial limtter input
accurately, but predicted a higher frequency and more highly damped nonlinear
mode (; ; 0).

To summarize the parallel/series configuration response, it was found
that an unstable system response may be obtained by increasing either tile
input amplitude or frequency above a sufficient level. Predictions made
using the describing function ltneariza:lon technique were very accurate when
calculating li_iter Input magnitude; however, th. onY'near mode was con-
sistently less stable than that predicted by theory.

The series servo configuration tole:ates a higher limiter Input t_tgnal
before saturation since the limit3 are proportional to series servo authority
(full authority for this configuration). System responses to each of the low
frequency inputs, shown in figures 19 and 20, snow no saturation and no non-
linear mode overlaying _'he output. From Table 1 it may be seen that these
responses were well predicted by theory. Increasing input frequency to
8 rad/sec in the low amplitude case, figure 21, produces no saturation due te
the larger limiter tolerance. (Recall the stable limit cycle in figure 17 for
a .I sin (8t) input into the parallel/series mode.) Again, _o destabilizing

nonlinear mode is present In the time history, consistent with the theoretical
prediction. Increasing the input ampl£tude to .4 in. (figure 22) produces a

stable llmlt cycle, _AL, and a fslrly well damped nonllnear mode _ = .54).
Again, theory predicted a more stable nonllnear mode (_ = .75) t_tn was found
from experiment. Recall that the response of the parallel/serles oystem to
an input of .4 sin (8t) (llgure 18) was an unstable limit cycle, and divergent
aircraft yaw response.

Theoretical predictions of series _ervomode response were found to be

approximately as accurate as those of the parallel/serles mode, In each cese
limiter input magnitude was predicted very accurately; however, the nonlinear
mode damping was overpredlcted, Indicating a less stable system experiJNntslly
than would be anticipated from theory.

In this section, It has been fours that the descrlblng funetlon linear-
Izatlon provides a reasonably accurate pr_li(tion 'Jr system behavior. By
substantiating the results of the p_evious tn,:otettcal disrdssion, it sly be

' concloded that the full authority series con[iguration, while aff_.cted by the
low frequency nonlinear mode, will alway_ rewaln stable. Prediction of the

i

S

j

i
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stability of th_ parallel/se_ies mode provides the motivation for the balanre

of this report. Recall that the critical differences in system response
between the implementations were due to:

i. a lower limiter input magnitude tolerance in the parallel/serles
system, and

2. the extra open loop pole at the origin introduced by the
parallel/series implementati_,_.

The following sections of the report concentrate: (i) on placing boundaries

on the instability in the parallel/series implementation and (2) on evaluat-

ing the stabilizing effects of various system co.figuration changes, keeping

in mind the critical differences between the implementations which apparently
introduced the insLability.

Effect of Input Amplitude and Bandwidth

Addressed in this section of the report is the theoretical prediction

of the stability boundary for sinusoidal and square wave inputs, and the

accuracy of that prediction, as verified by experiment. Using the iteration

technique for describing function gain value as a function of system input
discussed previously, the theoretical stability boundary as a function of

input amplitude and frequency has been determined. This theoreticdl boundary

is based on the value of bl/A for neutral stability determined from figure
13. The experimental bou,dary was found, as shown in the time histories,

from the digital model.

Sinusoidal lnput.-- Figure 23 illustrates the stability boundary for

sinusoidal inputs of various magnitudes at the nominal limiter authority of
20% (±.12 inches). The input magnitude whicn the system will tolerate was

found to be inversely proportional _o the input frequency. From the figure

it can be seen that the theory shows excellent correlation with experimental
results for small input amplitudes, and becomes progressively less accurate

as the amplitude increases. Recall from the previous comparison of predicted

and actual responses that the theory consistently predicted a mor____eestable

response than experimental results showed, for the saturated limiter.

Due to the distortion of the frequency response of , e nonlinear system

between system input magnitude, M, and !imlter input magnitude, A, a dis-

continuity or "Jump" resot;qnce, as described in reference 5, was found to
exist. Shown in figure 24 ib the frequency response of the linear system and

the Jump discontinuity responses for three nonlinear system input magnitudes.
At saturation (recall for nominal 20% series servo authority, the limits are

±.12) for each system input magnitude, M, the llmiter input magnitude, A,
suddenly Jumps to a much higher value causing a sudden decrease in describing

function gain, bl/A, and thus total system gain, sufficient to cause an

unstable limit cycle. (Theoretically, this behavlor has the characteristics

of a hysteresis with the resonance frequency dependent upon the side from

9
)
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which it is approached, but this was not successfully demonstrated experi-

mentally.) Since the saturation point decreases with input magnitude, the

resonance frequency also decreases as a function of input magnitude in a
manner consistent with the inverse proportionaJity between tolerable input

magnitude, M, and frequency, _, shown in figure 23.

This type of insidious instability due to saturation would be extremely
hazardous operationally because of its unpredictability to a pilot. Figures

25 and 26 show the time history response which may be anticipated for inputs

of 61_ = .4sin(1.22t) and .4sin(l.25t), respectively. The difference
between stability and instability in this case was found to be as little as

.03 rad/sec. Because the transition to an unstable system is not gradual or

predictable, in order to acquire an acceptable pilot-ln-the-loop control

system, the stability boundary m_ t be avoided during operation or eliminated
entirely.

Square Wave Input.- Sudden maneuvers require mor_ abrupt pilot inputs
and are better approximated by a square wave. In this section of the report,

the magnitude vs. frequency stability boundary established in the previous

discussions has been extended to include a square wave. Using Fourier series,
as u_scrlbed in reference 6, the square wave has been modeled analytically by

equation (6) using up to the 21st harmonic of the fundamental f_equency com-
ponent.

21

61_ = _ E !n sin nt (6)n=l

A theoretical model including the complexity of the 21st harmonic was
chosen because of the very close resemblance of the time response using this
representation and that of a square wave as shown in figures 27 and 28. In

figure 28, upstream signals, _BL, _AL, and yaw acceleration, _, include a
significant amount of the higher frequency Fourier series components. However
yaw attitude response, _, is virtually identical to that commanded by the
actual square wave, as in figure 27.

System stability for a sine wave input was found to be very sensitive to
input frequency. It would be anticipated that, because of the composition of
very high frequencies required to model the straight sides of the square wave,
system stability to a square wave input would be reduced significantly from
that of a sine wave.

Shown in figure 29 are the theoretical and experimental stability

boundaries for a square wave system input. The theoretical curve was gene-
rated using the Fourier series approximation as the input into the iteration

technique for describing function gain value. The experimental curve reflects

system response to an actual square wave, rather than the Fourier series
approximation. As shown, the stability boundary is reduced significantly
from the slnusoldal case in each magnitude and frequency. For example, a

square wave input of amplitude M/MmaY = .1 becomes unstable at .15 rad/sec
; as compared with 1.8 rad/sec for a sFnusoldal input of the same amplitude.!

:i As with the slnusoldal stability boundary, for hi?Ser input magnitudes, theory
l

lO
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predicts a more stable response than the experimental results show. Jump

resonance phenomena also exist here, as shown in the distorted frequency

response of system input magnitude to llmiter input magnitude in figure 30.
Due to the multi-frequency composition of the square wave, several jump dis-

continuities exist at different resonance frequencies.

Thus, the magnitude-frequency boundary is also a function of input

shape; specifically, stability of the system response is significantly more
sensitive to a square wave than to a sinusoidal input.

Effect of Series Servo Authority

One of the critical differences between the parallel/series and ser_es

servo systems is the higher limiter values of the latter which occur because
of the proportionality between series servo authority and limiter magnitude.

Nominal limits of the parallel/series system are based on 20% series servo
authority and the maximum practical limits would be based on 50%. In this

section of the report, the effect of variation of series servo limits on the

nonlinear system has been evaluated.

Theoretically, the result of increased series servo authority may be

understood to have a stabilizing effect on system response by recalling the

dependence of describing function gain, bl/A , on lim_ter size, a, from
equation (3). As the limiter magnitude is increased, so is Lhe minimum

allowable describing function gain value, yielding greater system staDillty.

From figure 31 (generated analytically) it may be seen that the sta-
bility boundary as a function of series servo authority normalized to input

magnitude varies almost linearly with low slnusoldal input frequencies. As
the ratio of series servo authority to input magnitude increases (either by

increasing series servo authority or decreasing input -agnitude, as previously

discussed) the system's tolerance to input frequency _ increased. Note that

a percentage of series servo authority normalized to Input magnitude exists
such that at or above which the system has a stable response at all input

frequencies.

TD_ trend toward increased system stability for increased series servo

authority is further illustrated in figure 32. The comparison of magnitude-

frequency tradeoff for nominal and increased series servo authority, 20% and
50%, respectively, was f_und to show a significant increase in the stability

boundary at the maximum practical limit of 50% serle_ servo authority.

Effect of System Bandwidth

Evaluated in this part of the report are the influences of system band-

ii width on nonlinear system stability. Contributions to bandwidth that are
considered are the yaw angle and rate feedback gains and the parellel servo
gain in the forwar_ loop.

11
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Yaw An_le and Rate Feedback Gain Variations.-- Variation of the yaw angle

feedback gain, K_ (as in figure 4), with simultaneous variation of the yaw
rate feedback gain, K_, in order to maintain adequate closed loop damping,
sbowed a significant increase in linear system phase margin but almost no

change in gain margin. This is illustrated in figure 33 for variations in

K_ and _ from the nominal values of 4.0 and 4.0 to .5 and 1.45, respec-
tively.

. However, nonlinear stability boundary changes were found to be unfavor-

able for reduction of yaw angle and rate f .....L_ moi,_ =,,hatm in figure 34.
From the figuze, two trends were noted: (i) as system bandwidth was reduced,

the system's tolerance to magnitude at high input frequencies was increased

slightly because of the lower describing function gain value for neutral

stability due to the lower feedback gains, K_ and K_. However (2), for the
same amount of system bandwidth reduction, a much greater reduction in input

' bandwidth occurred. Equation (5)shows the relationship between system input,

_I_, describing function gain, bl/A , and the yaw angle and rate feedback
gains, _ and K_.

More favorable nonlinear system results were obtained by varying only

the yaw angle feedback gain, while maintaining the yaw rate feedback gain
at its nominal value. (This resulted in a 20% to 30% decrease in closed loop

damping ratio.) Varying K_ showed little effect on linear systpm stability

criteria, as illustrated in figure 35 for values of K_ from the nominal
value of 4.0 to the limiting value of O.

Changes in the nonlinear system stability boundary with K_ were found
to exhibit the same two general trendE as previously noted (figure 36).

Specifically, these were a reduction in tolerable input bandwidth and an

increased level of system tolerance to magnitude at high input frequencies.
In this case, however, the increased tolerance to magnitude at high fre-

quencies outweighs the input bandwidth loss, resulting in a net favorable

effect on the nonlinear stability boundary.

Recall that a critical difference between the parallel/serles and series

only systems was the introduction of an open loop pole at the origin into the
parallel/serles system by the parallel servo. This extra open loop integrator

had a destabilizing influence on the parallel/series system as was shown in

figures 13 and 14. Elimination of the yaw angle feedback (E_ - 0) changed
the parallel/serles system into one with only three open loop poles at the
origin (as in the series only system).

Figure 37 illustrates the variation of the system eigenvalues with
describing function gain value for the closed loop system without yaw angle
feedback. From the figure it may be seen that as the describing function
gain, bl/A, approaches zero, the branches of closed loop etgenvalues depart
vertically and remain in the left half plane. In figure 36, then, the sta-

bility boundary is completely eliminated for K_ = O. Stabilizing the system
i in this manner does not preclude the existenceof the low frequency nonlinear

mode. The frequency and damping of this mode vary, as before, with describ-

'i ing function gain value, calculated from equation (5) as a function of system
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input. Eliminating the yaw angle feedbaok and thereby stabilizing the system
ensures only that the damping of this mode will be positive.

Yaw angle feedback elimination changes the system from the designed
rate-command-attitude-hold configuration to rate-command only. System

response, although stable for all inputs, lacks directional-hold capability.
With an inadequate yaw rate sensor, heading drift may present a problem; also,

removal of attitude-hold removes the control system's resilience to wind or
turbulence upsets.

Parallel Servo Cain Variations.-- In terms of operational safety considera-

tions, it was desirable to maximize the saturation time following a runaway

failure, and thus minimize parallel servo gain, Kp.. Another consideration
in gain selection was the upstream limiting of the parallel servo input signal

by the series servo iJ_iLer. Due to the proportionality of the series servo
limiter value to series servc authority, the parallel servo gain was chosen

to be inversely proportional to this parameter. Parallel servo gain, then,
ac shown in equation (7) is a function of the time which is allowed for satu-

ratzon of the parallel servo in the case of a runaway failure and of the

fractzon of the total control power allotted to the series servo.

1

Kparalle] = (Series Servo_ISaturation _ (7)se o AuthorityTime/
The same trends as in the previous discussion were apparent with the

system bandwidth reduction due to lowering of the parallel servo gain, Kps.
Linear system phase and gain margins were found to increase, although much

more significantly than in the case of the attitude feedback gain, with

parallel servo gain reduction, as illustrated in figure 38. From the figure,
it may be seen that a significant stabilization of the linear system occurs

with zeduced parallel servo gain.

With the nominal value of 20% series servo authority, the minimum value

of parallel servo gain may be established to be KDs = .25, based on a maxl-
mum practical saturation time of 20 seconds. If the series servo authority
were increased to the maximum reasonable level of 50g, a minimum value of

= .I is acceptable. The same general trends, specifically a reduction

_Stolera_le input bandwidth and an increased level of system tolerance to
magnituCe at high input frequencies as were previously noted for attitude
feedb=;k gain reduction, were found to also apply to the reduction of parallel
semlo gain. These trends are illustrated for the nonlinear system with 20%
,eries servo authority in figure 39 where it may be seen that the undesirable

loss of input bandwidth far outweighs the gain in system tolerance to magni-
tude at high frequencies for a given reduction in parallel servo gain.

• Figure 40 shows the change in nonlinear _tability boundary with parallel
servo gain for a system with 50% series servo authority. The combination of
the inherently stabilizing effect of increased servo authority and the sualler

minlmt,m acceptable parallel servo gain of .Kps = .I resulted in a net favor-
ab!_ effect on the nonlinear stability _ounaary.
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CONCLUSIONS

Th_ analysis described in this report encompassed linear and nonlinear
stability analyses of the state-rate-feedback-impliclt-model-following control
system of reference 3. Theoretical stability predictions of the nonlinear
system were accomplished using a describing fuvction linearization technique.
F_perimental results obtained from a digital model were used to substantiate
tile theory. From this analysis, the following specific conclusions have been
drawn:

1. The experimental analysis using the simplified Fortran model was
accomplished non-real-time with a sampling period of T = .005 seconds.
Although the real-time computer simulation uses a sampling period of T = .05
seconds, the linear system's dynamic characteristics were found to be repre-
sented much more accurately with T = .005 seconds.

2. Analytical prediction of nonlinear systent stability using the
describing function linearization technique for a simple ltmiter was found to
be valid for each of the sinusoidal and square wave system inputs.

3. In its nominal configuration, the full authority series servo mode
was found to be stable at all system inputs; the parallel/series servo mode
was found to be conditionally stable and possibly unacceptable for inputs
which saturate the limiter upstream of the parallel and series servos. This

conditional stability results from the extra open loop pole at the origin

introduced in the parallel/series implementation. The effect of the series
servo position limiter is sufficient to reduce the system gain and introduce

a low frequency instability.

4. A stability boundary, in which tolerable input magnitude was

inversely proportional to input frequency was found to exist in the

parallel/series servo mode. In terms of this stability boundary, signifi-

cantly more sensitivity was observed to a square wave input due to its high

frequency composition than to a sine wave input.

5. Increasing the fraction of total control power allotted to the
series servo was found to have a significantly favorable effect on the sta-

bility of the nonlinear system with parallel/serles servo implementation.

Increasing the series servo authority to its maximum practical level was

found to raise, but not eliminate, the stability boundary.

6. In terms of the magnitude-frequency stability boundary, reduction of
yaw angle and rate feedback gains was found to affect the nonlinear stabillty
boundary unfavorably. Yaw angle feedback gain reduction (alone) improved
stability, resulting in a relatively small input bandwidth reduction and a
more significant increase in system tolerance to magnitude at high input fre-
quencies. Elimination of yaw angle feedback was found to stabilize the
parallel/series system; however removal of the attitude hold capability
reduces the system's resilience to rate gyro drift or atmospheric distur-
bances.

14
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7. Parallel servo gain reduction (alone) was found to have an adverse

effect on nonlinear system stability. The small increase in system tolerance

to magnitude at high input frequencies was by far outweighed by the rela-

tLvely large loss of input bandwidth. The combination of parallel servo gain

reduction and series servo authority increase was found to improve nonlinLar

system stability.

I
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APPENDIX

GAIN EQUIVALENCES AND INITIAL VALUES

SRFIMF Inftlal Numerical Value

LM61% +2.1 in.

K10 O.3948

K20 O.9349

4.0

4.0

,_ I_H O.3324

L_c -+0.12in.

T7 O.05/sec

KS0 2. 533

Gy I.0

Kyc 1.O

FCN 7.5

Initial

Analysis SRFIMF Numerical Value

al_ _I_ --

IM6I_ LM6I_ +_2.1 in.

K1 (K_ x K_H) 1.33

K2 (K10 + K20) 1.33

K3 (K30 x Cy x FCN x KTORQUE/Iz) 0.7082

Ks (KToRQUE/I z) 0.0373

Kps -- 2.5

Kp (K3o,<Kp,x Kvc,, FCS) 47.49
Kss -- 7.0

Ks (Kss x K30) 17.73

1(_ % 4.0

4.0

17

ft

J
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..,_....... _ ...................................... --....................................-_i_,r-_,--

Initial

Anal_sis SRFIMF Numerical Value

±a ±LM_c ±0.12 in.

T7 _7 O.051sec

T2 -- O.lO/sec

KTORQUE -- 1200 deg-lbf

Iz I z 32192 slug-ft 2

i 18
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Ftgure 2.- Sl=pllfled yaw control systes.
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GH(s) = 7.082 K ($+ 20) (s2 + 4s + 4)

s3 ($+ 10) 0.075 2

0

Figure 8.- Partial root locus of linear system, series servo mode.
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Figure 9.- Frequency response of linear system, series servc mode.
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Figure 10.- Frequency response of linear system, parallel/series servo mode.
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TIME HISTORY ANALYSIS

T, sec GAIN Wd WN _" K = 1.0

• 0.005 0.75 7.66 7.96 0.27 8

• 0.050 0.75 6.66 6.81 0.20 ,V
_) 0.005 0.60 6.90 7.09 0.23

• 0.050 0.60 5.89 6.00 0.19

_: I_ 0.005 0.45 5.76 5.84 0.16 6

• 0.050 0.45 5.06 5.07 0 05

0 0.005 0.30 4.60 4.60 0.03

0 0.050 0.30 UNSTABLE RESPONSE

LINEAR ANALYSIS O1_

4 j_

GAIN Wd WN T I -_ "15
I I

V 0.75 7.3,=. 7.73 0.31 I _0.075
D 0.60 6.56 6.76 0.24 I | 2|

I /

0

- 0
0

Figure 1[.- Time history vs. linear analysis, parallel/series servo mode.
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I"1 1.0 0 I'_ bl/A = 0.196 _, J
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(_ 0.7 -6 Q 1 j_ J
0 0.6 -8 I

i

V 0.5 -10 J
!

D 0.4 -12 <>

Z_ 0.2 -16 t 0

oo1 1. t I
O 0.01 -19.8 i i I t I
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4s
GH(s) 6.613 K bl/A (s+ 2.68) (s+ 20) + 4)

._ + ]7(,2 10

E) V SEE INSET ABOVE
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O

Figure 13.- Variation of closed-loop roots vlth magnitude of nonlinearity (bl/A),
'_ parallel/series servo mode.

32

1982014407-037



2

I_ I1.
A jo_

Q

bl/A OPEN LOOP
POLE

_ , o
C} 1.0 0

0 0.9 -2 I
1 1 I I
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I_ 0.3 -14 r:l
ZI 0.2 -16 0
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71sure 14.- Variation of closed-loop" roots vtth _Itude of uoultmrtty (bl/A),
series servo mode.
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Flsure 16.- Nomlnal conflsuratlon, parallellserles servo, 61) - O.h sin (1.0t).
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Figure 17.- Nomlnal configuration, pArallel/series servo, 815 = C.! _Ln (8.Or).
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Figure 18.- Nominal configuration, parallel/series servo, _I_ = 0.4 sin (8.Or).
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Figure 19.- Nominal configuration,series servo, 6i_ = 0.I sin (l.Ot).
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Figure 20.- Nominal configuration, series servo, 6i¢ = 0.4 sin (l.Ot).

39

!
|

I

i
1

1982014407-044



.4-

^AAAAAAAAAAAAAAAAAAAAAAAAAAA,
,n._.,VVyVVVVyVVVVyVVVVVVVVVVVVVVVl I

.4

[ ^AAAAAAAAAAAAAAAAAAAAAAAAAAA,
'°:l vvyvvvvyvvvvyvvvvvvvvvvvvvvl

.2

[^AAAAAAAAAAAAAAAAAAAAAAAAAAArad 0

VVyVVVVyVVVVyVvvvvvvvvlvvvvl
• .05

-.05 I

.01

r_.O05

0

.1

GJO' 0
in.

0 4 8 12 16 20 24
TIME, sac

Figure 21.- Nominal configuration, series servo, 61_ = 0.l sln (8.Or).
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Flgure 22.- NomlnaZ configuration, series servo, 6i$ - 0.4 sln (8.Or).
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_1_ = M sin _t

MMA X = 2.1 in.

20% SER IES SERVO AUTHOR ITY

1.0 F __ "---'-- t0.12THEORyin.LIMITER AUTHORITY
----- EXPERIMENT

,. .8

UNSTABLE

.2 STABLE _'_,=,_
RESPONSE _ ....

I I I I

0 .5 1.0 1.5 2.0 2.5
_, rad/sec

Figure 23.-Amp|Jt,ide-fre, qucncy .qtabiltty boundary for sinus_tdal input.
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VlguLe 24.- Frequency response of linear and nonlinear systems; inset shows jump

discontinuity upon saturation; system input = 61 = M sln mr;

20% serjps servo aut_:o,lty; ±0.12 in. llmtter Cauthorlty.
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Figure 25.- Nomlnal configuration, parallel/serles servo, 61_ = 0.4 sin (1.22t).

44

I ......

i

1982014407-049



_BL' 0
in.

-2.0 _

2.0

_AL' 0
in.

-2.0 _--'--_

..
.fad 0

sec2

-.7

• 2.0 /

rad 0 _- _
sec

-2.0

2.0

_' 0
tad

-2.0

.4

in.

-,4 L_
0 4 8 12 16 20 24

TIME. sec

Figure 26.- Nominal configuration, parallel/serie_ servo, 6i_ = 0.4 sin (1.25t).
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Figure 27.- Nominal conftguraClon parallel/series servo, 615 = square wave, M = O.l,
= 0.4 rad/sec.
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Figure 29.- Amplitude-frequency stability boundary for square wave input.
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Figure 30.- Frequency response cf linear and nonlinear systems, tncludtn 8 Jump
r_s,_nance discontinuity upon saturation.
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Figure "]t.- Stab|lttV boundary as a function of normalized series servo authority
and input frequency.
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Figure 32.- Amplitude-frequency stability boundary as a function of ser_es servo
authority.
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Figure 34.- Amplltude-frequencystability boundary as a function of yaw angle and

rate feedback gains, K¢ and K..
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feedback gain, K_.
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Note: With K_ = O _ stability boundary eliminated.

Figure 36.- Amplitude-frequency stability boundary as a function of yaw angle

feedback gain, K_.

55

P

_ i Li i,, illll _ .....

1982014407-060



' II
OPENLOOP I 0 2 I

v Ibl/A POLE I _ E)

o lO o I _ I
O 0.9 -2 I _, I

i'% o.8 -4 -_1 j(_ I
0.7 -6 I Q

0 06 -8 I I I
v os -lO I I
D 0.4 -12
I_ 0.3 -14 I I

ZS 0.2 -16 I _ .... 0 I

O 0.1 -18 I I
l I i i

0 0.01 -19.8 1-3 -2 -1 0 I
I ° _1

GH(s) 6.613 K bl/A (s+ 2.68) (s + 20) (s2 + 4s)= 10

s3 Is + 20 (1 - bl/A)] ($+ 10) B

v o _ ,s
C) SEE INSET ABOVE

• " " 0

I L l I , I
-20 -15 -10 -5 0 5

O

Figure 37.- Varlatlon of closed-loop roots with magnitude of nonlinearlty (hi/A).

K_ - C, paralle1/serles servo =ode.
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Figure 38.- Variation of linear system phase and gain margins wlth parallel servo
gain, Kps.
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Figure 39.- Amplitude-frequency stability boundary as e function of parallel servo
gain, Kps"
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Figure 40.- Amplitude-frequency stability boundary as a function of paral!el servo

gain, Kpa.
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